Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052178

RESUMO

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Assuntos
Mudança Climática , Produtos Agrícolas , Melhoramento Vegetal , Agricultura , Produção Agrícola
2.
Trends Plant Sci ; 28(9): 987-990, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394307

RESUMO

Plants release chemical signals to interact with their environment when exposed to stress. Khait and colleagues unveiled that plants 'verbalize' stress by emitting airborne sounds. These can train machine learning models to identify plant stressors. This unlocks a new path in plant-environment interactions research with multiple possibilities for future applications.


Assuntos
Acústica , Som , Aprendizado de Máquina , Plantas
3.
Plant Physiol ; 192(3): 2475-2491, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37002819

RESUMO

Plants have evolved sophisticated mechanisms to detect various forms of danger. Damage-associated molecular patterns (DAMPs) are endogenous danger molecules that are released from damaged cells and activate the innate immunity. Recent evidence suggests that plant extracellular self-DNA (esDNA) can serve as a DAMP molecule. However, the mechanisms by which esDNA functions are largely unknown. In this study, we confirmed that esDNA inhibits root growth and triggers reactive oxygen species (ROS) production in a concentration- and species-specific manner in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum L.). Furthermore, by combining RNA sequencing, hormone measurement, and genetic analysis, we found that esDNA-mediated growth inhibition and ROS production are achieved through the jasmonic acid (JA) signaling pathway. Specifically, esDNA induces JA production and the expression of JA-responsive genes. The esDNA-mediated growth inhibition, ROS production, and gene expression are impaired in the JA-related mutants. Finally, we found that the JA signaling pathway is required for the esDNA-elicited resistance against the pathogens Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. This finding highlights the importance of JA signaling in esDNA-mediated biological effects, thereby providing insight into how esDNA functions as a DAMP.


Assuntos
Arabidopsis , Resistência à Doença , Humanos , Resistência à Doença/genética , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , DNA/metabolismo , DNA/farmacologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Pseudomonas syringae/metabolismo , Imunidade Vegetal/genética
4.
Mol Plant ; 16(5): 849-864, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36935607

RESUMO

Terrestrial plants can affect the growth and health of adjacent plants via interspecific interaction. Here, we studied the mechanism by which plant root exudates affect the recruitment of the rhizosphere microbiome in adjacent plants-with implications for plant protection-using a tomato (Solanum lycopersicum)-potatoonion (Allium cepa var. agrogatum) intercropping system. First, we showed that the intercropping system results in a disease-suppressive rhizosphere microbiome that protects tomato plants against Verticillium wilt disease caused by the soilborne pathogen Verticillium dahliae. Second, 16S rRNA gene sequencing revealed that intercropping with potatoonion altered the composition of the tomato rhizosphere microbiome by promoting the colonization of specific Bacillus sp. This taxon was isolated and shown to inhibit V. dahliae growth and induce systemic resistance in tomato plants. Third, a belowground segregation experiment found that root exudates mediated the interspecific interaction between potatoonion and tomato. Moreover, experiments using split-root tomato plants found that root exudates from potatoonion, especially taxifolin-a flavonoid compound-stimulate tomato plants to recruit plant-beneficial bacteria, such as Bacillus sp. Lastly, ultra-high-pressure liquid chromatography-mass spectrometry analysis found that taxifolin alters tomato root exudate chemistry; thus, this compound acts indirectly in modulating root colonization by Bacillus sp. Our results revealed that this intercropping system can improve tomato plant fitness by changing rhizosphere microbiome recruitment via the use of signaling chemicals released by root exudates of potatoonion. This study revealed a novel mechanism by which interspecific plant interaction modulates the establishment of a disease-suppressive microbiome, thus opening up new avenues of research for precision plant microbiome manipulations.


Assuntos
Microbiota , Solanum lycopersicum , Rizosfera , RNA Ribossômico 16S , Bactérias , Plantas/genética , Exsudatos e Transudatos , Raízes de Plantas/microbiologia , Exsudatos de Plantas/química
5.
Front Plant Sci ; 14: 1056629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875620

RESUMO

Interaction: Despite numerous recent insights into neighbor detection and belowground plant communication mediated by root exudates, less is known about the specificity and nature of substances within root exudates and the mechanism by which they may act belowground in root-root interactions. Methods: Here, we used a coculture experiment to study the root length density (RLD) of tomato (Solanum lycopersicum L.) grown with potato onion (Allium cepa var. aggregatum G. Don) cultivars with growth-promoting (S-potato onion) or no growth-promoting (N-potato onion) effects. Results and Discussion: Tomato plants grown with growth-promoting potato onion or its root exudates increased root distribution and length density oppositely and grew their roots away as compared to when grown with potato onion of no growth-promoting potential, its root exudates, and control (tomato monoculture/distilled water treatment). Root exudates profiling of two potato onion cultivars by UPLC-Q-TOF/MS showed that L-phenylalanine was only found in root exudates of S-potato onion. The role of L-phenylalanine was further confirmed in a box experiment in which it altered tomato root distribution and forced the roots grow away. In vitro trial revealed that tomato seedlings root exposed to L-phenylalanine changed the auxin distribution, decreased the concentration of amyloplasts in columella cells of roots, and changed the root deviation angle to grow away from the addition side. These results suggest that L-phenylalanine in S-potato onion root exudates may act as an "active compound" and trigger physio-morphological changes in neighboring tomato roots.

6.
Environ Microbiol ; 23(8): 4741-4755, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34289203

RESUMO

Agricultural intensification is known to alter the assembly of soil microbial communities, which regulate several critical ecosystem processes. However, the underlying ecological processes driving changes in microbial community assembly, particularly at the regional scale, remain poorly understood. Using 16S rDNA sequencing, we characterized soil bacterial community assembly in three land-use types with increasing land-use intensity: open fields cultivated with main crops (CF) or vegetables (VF), and greenhouses cultivated with vegetables (VG). Compared with CF, VF and VG altered bacterial community composition and decreased spatial turnover rates of edaphic variables and bacterial communities. Bacterial community assembly was primarily governed by deterministic processes; however, bacterial communities in VF and VG were phylogenetically less clustered and more influenced by variable selection and less by dispersal limitation. Soil pH was the most important edaphic variable mediating the changes in bacterial community assembly processes induced by agricultural intensification. Specifically, decreasing soil pH led to stochastic assembly of bacterial community. Soil pH was lower in more intensively managed lands, especially in case of VG (pH range: 5.86-7.42). Overall, agricultural intensification altered soil bacterial community assembly processes, which was associated with soil acidification. These findings may have implications for improving soil quality and agroecosystem sustainability.


Assuntos
Microbiota , Solo , Agricultura , Concentração de Íons de Hidrogênio , Microbiologia do Solo
7.
Saudi J Biol Sci ; 28(6): 3616-3623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121905

RESUMO

Palmitic acid (PA) in root exudates or decaying residues can reduce the incidence of soil-borne diseases and promote the growth of some crop plants. However, the effects of PA on soil-borne pathogens and microbial communities are poorly understood. Here, we investigate the effects of PA on overall watermelon microbial communities and the populations of Fusarium oxysporum f.sp. niveum (Fon). The effects of PA on the mycelial growth and spore production of Fon were tested in vitro, while its effects on Fon, total bacteria and total fungi populations, and microbial communities were evaluated in a pot experiment. The results revealed that all test concentrations of PA inhibited Fon mycelia growth and spore production. The pot experiment showed that 0.5 mM and 1 mM PA reduced Fon but increased total bacteria populations, and 0.5 mM and 1 mM PA 0.5 mM and 1 mM PA promoted the change to a soil type of bacteria soil. Meanwhile, 0.5 mM PA and 1 mM PA altered the community composition of the rhizosphere microorganisms and reduced the relative abundance of two bacterial operational taxonomic units (OTUs) and the two fungal OTUs that were significantly (p < 0.01) related with disease severity and increased that of four bacterial OTUs and the two fungal that were highly significantly (p < 0.01) negatively correlated with the disease severity. These results suggest that application of PA decreased the populations of Fon, changed the rhizosphere microbial composition, reduced the disease severity of Fusarium wilt, and promoted the growth of watermelon.

8.
Front Microbiol ; 12: 789034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046916

RESUMO

Cover crops can improve soil biological health and alter the composition of soil microbial communities in agricultural systems. However, the effects of diversified cover crops on soil microbial communities in continuous cropping systems are unclear. Here, using different soil biochemical analysis, quantitative PCR and 16S rRNA amplicon sequencing, we investigated the effects of cover crops, alone or in mixture, on soil physicochemical properties in 2019 and 2020, and soil bacterial communities in 2020 in a continuous pepper cropping system. A field trial was established before pepper planting and eight treatments were included: fallow (no cover crop; CK); three sole cover crop treatments: wheat (Triticum aestivum L.; W), faba bean (Vicia faba L.; B), and wild rocket (Diplotaxis tenuifolia; R); and four mixed treatments: wheat + wild rocket (WR), wheat + faba bean (WB), wild rocket + faba bean (RB), and wheat + wild rocket + faba bean (WRB). The pepper yield was increased in the WR and WB in 2019 and 2020, and in the WRB in 2020. Cover crops increased the soil pH, but decreased the concentrations of NH4 + and available phosphorus. Bacterial abundance was increased by cover crop treatments, and community structure was altered in the W, WB, and WRB treatments. Moreover, we found that pH was the key factor associated with the changes in the abundance and structure of the bacterial community. Cover crop treatments altered the bacterial community structure with shifts in the dominant genera, which have plant-growth-promoting and/or pathogen-antagonistic potentials, e.g., increased the abundances of Streptomyces, Arthrobacter, and Bacillus spp. in the W and WRB, and Gaiella spp. in the WB. Overall, we found that cover crops altered the soil physicochemical properties and bacterial community, and these changes varied with species composition of the cover crops, with wheat and its combination with legumes as most effective treatments. These results suggest that the diversification within cover crops could provide better crop yield stimulatory affects by altering soil biochemical environment.

9.
Plants (Basel) ; 9(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947736

RESUMO

Sub-optimal temperatures can adversely affect tomato (Solanum lycopersicum) growth, and K+ plays an important role in the cold tolerance of plants. However, gene expression and K+ uptake in tomato in response to sub-optimal temperatures are still not very clear. To address these questions, one cold-tolerant tomato cultivar, Dongnong 722 (T722), and one cold-sensitive cultivar, Dongnong 708 (S708), were exposed to sub-optimal (15/10 °C) and normal temperatures (25/18 °C), and the differences in growth, K+ uptake characteristics and global gene expressions were investigated. The results showed that compared to S708, T722 exhibited lower reduction in plant growth rate, the whole plant K+ amount and K+ net uptake rate, and T722 also had higher peroxidase activity and lower K+ efflux rate under sub-optimal temperature conditions. RNA-seq analysis showed that a total of 1476 and 2188 differentially expressed genes (DEGs) responding to sub-optimal temperature were identified in S708 and T722 roots, respectively. Functional classification revealed that most DEGs were involved in "plant hormone signal transduction", "phenylpropanoid biosynthesis", "sulfur metabolism" and "cytochrome P450". The genes that were significantly up-regulated only in T722 were involved in the "phenylpropanoid biosynthesis" and "plant hormone signal transduction" pathways. Moreover, we also found that sub-optimal temperature inhibited the expression of gene coding for K+ transporter SIHAK5 in both cultivars, but decreased the expression of gene coding for K+ channel AKT1 only in S708. Overall, our results revealed the cold response genes in tomato roots, and provided a foundation for further investigation of mechanism involved in K+ uptake in tomato under sub-optimal temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...